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Slovenia

bUniversity of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture,
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Abstract

Modal analysis using structural responses identified from high-speed cameras is a challenging
task. The problem is that the measured displacements are relatively small (typically deep
in the sub-pixel range) and submerged in noise due to the low dynamic range of the camera
sensor. A typical approach to determine structural responses from high-speed camera data
is the digital image correlation (DIC) method, a general, computationally intensive method
for identifying displacements. Without knowing the assumptions of the modal analysis,
DIC identifies the displacement in the time domain by minimising the difference between
two consecutive regions of interest (ROIs). Optical flow is a method based on the change
in intensity in a given pixel due to the change in reflection from a moving surface. The dis-
placement is identified from the change in intensity and the spatial gradient of the intensity
of the surface. For small, sub-pixel movements, the relationship between intensity change
and displacement is linear, which opens up the possibility of performing the modal analysis
directly on the pixel intensity measured by the camera. This research applies the recently in-
troduced Morlet-wave modal method and introduces an experimental modal analysis based
on a single pixel with optical flow directly from the pixel intensities and the spatial gradient
of the intensity. Furthermore, it is shown that the natural frequencies and damping ratios
do not require the spatial gradient. The introduced method was successfully applied to the
experimental test case where a pixel-based, full-field modal analysis was performed. The
influence of averaging the results from multiple pixels in the modal domain is investigated.
Modal identification is compared with the results obtained from the displacements identified
with a digital image correlation (DIC) method. The introduced direct pixel-based modal
analysis provides a robust and numerically efficient way to a full-field modal analysis.
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1. Introduction

The main advantage of using high-speed cameras in structural dynamics analyses is
the non-contact and relatively simple measurement of the full-field structural response [1],
typically providing several thousand measurement points. The advantage of such an over-
determination of the response has been noted in several areas of structural dynamics, such
as structural health monitoring [2], damage localisation [3], model updating [4], measure-
ment [5] and reconstruction [6] of the sound-radiation field, and system identification [7].
In most of these areas, the analysis is made in the first step with displacement responses
obtained by processing high-speed video images using the digital image correlation (DIC)
method [8]. DIC is based on an optimisation procedure performed on selected regions of
interest (ROI) between two consecutive images [9]. This method is computationally inten-
sive and time consuming. The second step is then to perform a modal identification using
the selected method, which requires additional computational time [10, 11]. The identified
displacements are typically in the subpixel range, where noise dominates due to the low
dynamic range, which poses a challenge for the modal identification, especially at higher
modes [12].

Modal identification from high-speed video data has seen significant research interest,
for example, Huňady and Hagara [13] (2017) presented a method for full-field modal anal-
ysis based on the frequency-response functions (FRFs) of the full-field structural response
obtained using the DIC method. The presented method for modal analysis is based on
the singular-value decomposition (SVD) of FRFs to identify the mode shapes and decou-
ple the system into equivalent single-degree-of-freedom (SDOF) FRFs to obtain Enhanced
FRFs. These were obtained as a weighted average of all the FRFs using singular vectors as
weighting functions to identify the natural frequencies and damping ratios with the Ratio-
nal Fraction Polynomial [14] and Frequency-Domain Polynomial [15] methods. Yang et al.
[16] (2017) performed a modal analysis of the responses obtained using the phase-based op-
tical flow method [17]. The principal-component-analysis method [18] and the blind-source-
separation technique [19] were used to reduce the dimensionality and isolate the vibration
modes, and dense mode shapes were identified; natural frequencies and damping ratios were
identified using the Hilbert-transform-based SDOF method [20]. Javh et al. [21] (2018)
identified the mode shapes from responses obtained with a gradient-based optical flow up
to 10 kHz using the LSFD method [22], but the system poles were identified with a high
dynamic-range-sensor using the LSCF method [23]. Silva et al. [24] (2020) processed the
pixel intensities with the non-negative matrix-factorisation algorithm [25] to generate the
basis for the blind-source-separation technique [19] to separate vibrating modes and identify
the mode shapes; the natural frequencies were estimated with a Fourier transform and the
damping ratios were identified with a logarithmic decrement. Yang and Dorn [26] (2020)
obtained the structural response using the phase-based optical flow method [16] and then
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performed mode separation and mode-shape identification using the affinity-propagation-
cluster method [27]. Li et al. [28] (2022) developed an adaptive spatial filtering approach to
the pixel intensities of sharp edges to fit the mode shapes and improve the modal displace-
ments that are used for the identification of natural frequencies and damping ratios with the
least-squares rational function method [29]. Wang et al. [30] (2022) used the Lucas-Kanade
method of optical flow [31] on randomly sampled video data to perform modal identification
on modes lying above the Shannon-Nyquist sampling limit; modal parameters were identified
during the mode reconstruction optimisation process. By obtaining the full-field response of
the structure with DIC, Ángel J. Molina-Viedma et al. [32] (2022) validated classical modal
identification methods (PolyMAX [33] and LSCE [34]) also for the case of base excitation,
where an input of the structure is defined as an controlled acceleration at the structure’s
fixation point.

This research is similar to Javh et al. [12] and takes each pixel as a sensor and then
uses the Morlet-wave-modal method [35] to perform the modal identification. In this way
the modal parameters are identified directly from the pixel intensities without the need to
first retrieve the displacement response, which is due to the fact that, assuming a small
displacement, the displacement of the object is linearly related to the change in intensity.
The modal identification is demonstrated with an experimental laboratory test where the
modal identification is performed up to 2.6 kHz.

In Sec. 2 the theoretical background of optical flow, the MW modal method and the
discretisation of pixel intensities by the camera sensor are presented. The identification of
modal parameters from the pixel intensities is introduced in Sec. 3. In Sec. 4, the single-pixel
modal identification is demonstrated on a simple, numerical example, including a sensitivity
analysis with respect to noise and low dynamic range. The MW modal method is applied to
an experimental example in Sec. 5. The results based on the responses of the individual pixels
are compared with the results obtained by averaging the identification results of more pixels
in the modal domain, including checking with the results obtained from the accelerometer
response. Sec. 6 concludes the manuscript.

2. Theoretical background

This section presents the theoretical concepts on which this research is based. The
response of the mechanical system reproduced with light intensities based on the simplified
optical flow method is presented [12]. The simple model of the camera sensor is presented to
reveal the sources of error due to noise and quantisation in the generation of pixel intensities.

2.1. Optical flow

An object captured by the high-speed camera normally produces a sequence of greyscale
images. Mathematically, a single image is a 2D matrix of the form [M,N ] (rows, columns)
with pixel intensities (Fig. 1) representing the light reflected from the object. The image
contains spatial information about the object, e.g., its edges and textures. When the object
moves, the movement is registered as a spatial change in pixel intensities. The movement is
recorded with a sequence of images (frames), usually taken at fixed time intervals. Thus, a

3



video recording is a function of the pixel intensities in space and time: I = f(x, y, t), where
the pixel intensities are represented with Cartesian coordinate system (CS), as shown in
Fig. 1. Due to the simplicity the pixel CS is aligned with the Cartesian CS. The movement

Figure 1: Coordinate systems of an computer image. Orange: pixel coord., blue: Cartesian coord.

is registered as a temporal change in the pixel intensities (the optical flow). In order to
recognise the movement from the images, we must assume that the reflectivity of the observed
object is constant and that the light source is constant; consequently, the recorded intensity is
constant: dI(x, y, t)/dt = 0 [36]. For a line-scan camera (which records only one line in the
x direction), the method of optical flow is shown in Fig. 2. The light reflected from the object
entering the camera at time t has a (continuous) intensity I(x, t); the camera at the observed
pixel has an intensity I(x0, t). After ∆t, the object has moved by ∆x and the camera
observes the pixel intensity I(x0 − ∆x, t + ∆t). For the assumption of small displacements

Figure 2: One-dimensional change of pixel intensities – I(x, t), for continuous case.

(within the pixel), the change in intensity at the pixel ∆I = I(x0 − ∆x, t + ∆t) − I(x0, t)
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(Fig. 2) is associated with the gradient of intensity [12, 31]:

∆I

∆x
≈ −dI (x, t)

dx

∣∣∣∣
x=x0

(1)

then the displacement based on a single-point measurement is [12]:

∆x ≈ − ∆I

I ′(x, t)
(2)

where I ′(x, t) = dI/dx is the spatial gradient used to scale the change in pixel intensities
into a displacement. To identify the displacements from a video recording, Eq. (2) must be
iterated over the observed time interval for each pixel. If the displacement is small (e.g.,
within one pixel), it is not necessary to calculate the spatial gradient (1) for each time step
j: t+j∆t. Instead, a reference image I0(x) is obtained, from which the gradient image I ′0(x)
is then obtained. The reference image I0 can be an image from any time step j, but it is
best obtained by averaging the pixel intensities from several time steps to obtain an average
image that is less affected by noise [12].

2.2. Light-intensity-based structural response

The displacement described with the light intensities in Fig. 2 shows a rigid-body motion;
however, if the structure deforms (e.g., oscillates harmonically), then the displacement of the
object is a function of the spatial coordinate q (x, t), which also affects the light reflection.
Using the reference image I0 to identify the displacements, Eq. (2) can be rewritten as
follows:

q (x, t) =
I0(x) − I(x, t)

I ′0(x)
(3)

The extension to 2D optical flow requires the inclusion of the y direction in the Eq. (1),
and the denominator in Eq. (3) must be replaced by |∇I0| [12]. To determine the gradient,
information from the neighbouring pixels is needed, because the aperture problem cannot be
solved in the single pixel, which is solved by using the smoothing condition [36]. However, the
fact that the optical flow method identifies displacement in the direction of the gradient [36]
allows us to perform research on the single-pixel basis. Displacement identification in 2D
requires a high-gradient pattern that would allow camera to register in-plane motion e.g.,
a speckle pattern. More general case where the plane is tilted for a general angle, adjacent
pixels should be considered via averaging to reduce noise [12].

When the object is excited using an ideal impact, the light reflected from the object
at the fixed point x0 in Fig. 2 will harmonically oscillate around the static light intensity.
Assuming a free, linear, viscously damped response, the oscillation of the reflected light can
be represented by the sum of several SDOF systems, where the i-th mode is:

Ii(x, t) = AI,i(x) e−ωn,i δi t cos
(
ωd,i t− φi(x)

)
(4)

where AI,i is the amplitude of intensity and φi is the phase angle (both at location x and
both depend on the initial conditions), δi is the damping ratio, ωn,i is the undamped angular

natural frequency and ωd,i = ωn,i

√
1− δ2i is a damped angular natural frequency.
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2.3. Morlet-wave modal method

The Morlet-wave (MW) modal identification method is based on the Morlet-wave integral
to perform overdetermined modal identification from the free-response measurements in the
time domain [35]. The Morlet-wave integral1 is defined with:

W̃ (n, k, ω) =

∫ T

0

fm(t)ψ∗(n, k, ω, t) dt , (5)

where fm(t) is the measured signal, ψ(t) is a Morlet-wave basis function and ψ∗ is a complex
conjugate function. The MW function is expressed with the parameters n, k, ω, where n is
a time-spread parameter, k is the integer number of cycles of the wavelet function and ω is
the frequency corresponding to the damped natural frequency ωd of the selected mode [37].
The time length of the MW function is expressed by the number of cycles at the selected
frequency T = 2π k/ω . The theory of the continuous wavelet transform requires that the
basic wavelet function must satisfy the admissibility condition [38]:

∫∞
−∞ ψ(t) dt = 0. The

basis function of the Morlet wave is defined on the finite interval t ∈ [0, T ]; it is a symmetric
function that translates for T/2 (for details see [37]) and for k > 5 and n ≥ 5:∫ T

0

ψ(n, k, ω, t) dt ≈ 0. (6)

The MW method inherits the linear property of the continuous wavelet transform W {·},
which allows separate analyses of the harmonic components of signals with multiple harmonic
components:

Wn, ki, ωi

{
N∑
i=1

ai fm,i

}
= ai

N∑
i=1

Wn, ki, ωi {fm, i} (7)

where a is a constant, the index i marks the frequency component and ki is defined as:

ki =
T ωi
2 π

(8)

If the analysed signals have closely spaced harmonic components, more attention is needed
in the selection of the MW function parameters n and k [35].

To provide the basis for identifying the modal parameters, the MW integral of the free
response (4) is derived analytically by paying attention to the theoretical limit, which is
given by: k ≤ klim = n2

√
1− δ2

/
(8 π δ) [35], resulting in the complex function:

W (n, k, ωd) ≈ A
(π

2

) 3
4

√
k

nωd

e
4π2 k2 δ2

n2(1−δ2)−
π δ k√
1−δ2 ei(π k−φ) ε (n, k, δ) (9)

where ε (n, k, δ) is defined with the error functions [35]. The analytically obtained MW

integral (9) is compared to the MW integral W̃ (n, k, ω) (5) obtained from the measured

1In the literature [35, 37] the symbol I was used to denote the MW integral, but here it is used for the
pixel intensities and W is used instead.
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response. As described in the following, from the comparison the unknown modal parameters
can be identified [35]. These modal parameters are identified in the order in which they are
described.

The natural frequency is identified directly from the MW integral by numerically search-
ing for the maximum of the MW integral around the initial natural frequency, obtained,
for example, by picking peaks in the magnitude plot from the response in the frequency
domain [35]:

∂

∂ω

∣∣∣W̃ (n, k, ω)
∣∣∣ = 0 (10)

The damping is then identified from the ratio between the absolute values of two MW
integrals (5) obtained from the measured signal using different time-spread parameters n1,
n2, for the given natural frequency ωd and the predefined set of k parameters [35].

M̃ (n1, n2, k, ωd) =

∣∣∣W̃ (n1, k, ωd)
∣∣∣∣∣∣W̃ (n2, k, ωd)
∣∣∣ (11)

The same ratio is expressed analytically [35], where the natural frequency ωd and the un-
known amplitudeA cancel out and an analytically expressed ratio is obtainedM (n1, n2, k, δ),

which allows the definition of a cost function Fcost(δ) = M (n1, n2, k, δ)−M̃ (n1, n2, k, ωd).
The cost function is then solved for multiple k values using least-squares minimisation for
the unknown damping δ [35].

The amplitude and phase angle are identified from the MW integral. The difference
between the measurement and the analytically based MW integral is used to set the cost
functions for the amplitude and phase angle. The cost function for the amplitude iden-

tification is: Fcost(A) =
∣∣∣W (n1, k, ωd, δ, A)

∣∣∣ − ∣∣∣W̃ (n1, k, ωd)
∣∣∣, and the cost function for

phase-angle identification: Fcost(φ) = φ − φ̃(k). Both cost functions are solved separately
for multiple k values using the least-squares minimization for the unknown amplitude A and
phase angle φ, respectively [35]. The phase angle φ̃(k) is obtained from the argument of the
MW integral (5) with:

φ̃(k) = − arctan

=
[
(−1)k W̃ (n1, k, ωd)

]
<
[
(−1)k W̃ (n1, k, ωd)

]
 (12)

2.4. Discretisation of light reflectance for the object

This section discusses the basic principle of how the camera sensor converts light reflected
from the object into pixel intensities. The aim is to show the main sources of error in the
conversion and how the optical flow is registered. For more details on these topics the reader
should referred to [39, 40].

The light reflected from the object (Fig. 2) falls on the photo-sensitive areas of the CMOS
sensor, where it is spatially discretised into pixels (the number of photo-sensitive areas on
the camera sensor is usually expressed in Mpx). The light at each pixel is converted into an
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analogue signal, which is then digitised by the AD converter into unsigned integer values in
the range 0 ≤ I < 2Q, where Q ∈ N is the resolution of the AD converter, expressed by the
number of bits Q. The process of converting the light reflected from the object into pixel
intensity is shown graphically in Fig. 3 [39].

Figure 3: Schematic of the conversion of light into pixel intensities on the sensor of a digital camera with
sources of error.

The conversion is not ideal and the signal is contaminated with noise from the CMOS
sensor and the AD converter, which is typically 8 or 12 bits in today’s camera sensors.
The noise from the CMOS sensor dominates over the quantisation error and comes from
various sources, e.g., photoelectron noise, readout noise and dark-current noise [41]. The
noise requires a sophisticated model [42]; however, for simplicity it is here represented with
Gaussian noise.

The pixels on the camera sensor are usually rectangular and are defined geometrically.
Theoretically, the total light intensity measured by a pixel is related to the number of photons
captured by that pixel during the exposure time. It is important that the exposure time is
as short as possible to avoid blurring effects [28]. A short exposure time can be achieved
directly by exposing the object to strong light sources so that enough photons reach the
sensor, or by increasing the gain (higher ISO numbers). The first option is more desirable
because increasing the gain also increases the noise coming from the sensor, resulting in a
lower signal-to-noise ratio.

3. Optical-flow-based EMA

In this section the principles for performing a modal identification directly from pixel
intensities are presented, taking into account the influence of the spatial gradient. The
registration of the motion from the object q(x, t) to the light intensities I(x, t) is depicted
in Fig. 4 for the ideal example. To apply the Morlet-wave integral directly to the pixel
intensities, the following assumptions are required: the motion must be within the sub-pixel
domain A ≤ 1 px and there must be a linear relationship between the light intensity and
the displacement. It should be noted that the pixel intensities are digitised light intensities,
which except in Sec. 4, are treated as continuous.

To identify the modal parameters, a free response is required. When the response of the
object q(x, t) is obtained by hitting the modal hammer, the amplitudes at the beginning of

8



Figure 4: Conversion of the light reflectance from the object into pixel intensities.

the signal may exceed the 1 px assumption. Mitigation involves shifting the integration in
Eq. (5) by t0:

W̃ (n, k, ω) =

∫ t0+T

t0

q(x, t)ψ∗(n, k, ω, t) dt . (13)

Then Eq. (3) is inserted into Eq. (13), obtaining the following expression:

W̃ (n, k, ω) =
1

I ′0(x)

[
I0(x)

∫ t0+T

t0

ψ∗(n, k, ω, t) dt︸ ︷︷ ︸
L

−
∫ t0+T

t0

I(x, t)ψ∗(n, k, ω, t) dt

]
(14)

where the reference image I0 is time invariant for the subpixel motion and goes out of the
integral, which is now applied to the conjugated Morlet-wave function ψ∗. This leads to
the admissibility condition, which is approximately equal to zero (6): L ≈ 0. Finally, the
following expression is obtained:

W̃ (n, k, ω) = − 1

I ′0(x)

∫ t0+T

t0

I(x, t)ψ∗(n, k, ω, t) dt︸ ︷︷ ︸
W̃I(n, k, ω)

(15)
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In Eq. (15) we can observe that the Morlet wavelet can be applied directly to the pixel

intensities to obtain the MW integral W̃I(n, k, ω). The spatial gradient I ′0(x) can be used
to scale them to pixel units:

W̃ (n, k, ω) = − 1

I ′0(x)
W̃I(n, k, ω) (16)

The response of the structures contains several modes, and due to the linear property of the
Morlet wave (7), each mode can be analysed separately [43, 44].

3.1. The exact identification of the natural frequency

The exact natural frequency is identified from the MW integral (5) using the numerical
minimisation defined by Eq. (10) [35]. By inserting Eq. (16) into Eq. (10), the operator
∂/∂ω acts directly on the MW integral obtained from the pixel intensities:

− 1

I ′0(x)

∂

∂ω

∣∣∣W̃I (n, k, ω)
∣∣∣ = 0 (17)

It is important to obtain the exact natural frequency on the MW integral and the same
parameters n, k as will be used later in the modal identification step [35].

3.2. Identification of the damping ratio

By inserting Eq. (16) into Eq. (11), the spatial gradient is cancelled and the identification
of the damping ratio is made directly from the pixel intensities:

M̃ (n1, n2, k, ωd) =

∣∣∣W̃I(n1, k, ωd)
∣∣∣∣∣∣W̃I(n2, k, ωd)
∣∣∣ (18)

using the procedure described in Sec. 2.3.

3.3. Identification of the amplitude

Amplitude is identified from the pixel intensities (16) using the cost function:

Fcost(AI) =
∣∣∣WI (n1, k, ωd, δ, AI)

∣∣∣− ∣∣∣W̃I (n1, k, ωd)
∣∣∣ (19)

where WI is the analytical MW integral (9) based on the amplitude AI, which is the am-
plitude of the harmonic part of the light intensities (4). An absolute value of the spatial
gradient is required for the scaling to pixel units:

A(x) =
AI(x)

|I ′0(x)| (20)

which can be further scaled to engineering units.
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3.4. Identification of the phase angle

To correctly identify the phase angle from the pixel intensities, the sign has to be cor-
rected, leading to the following expression for the identification of the phase angle:

φ̃(k) = − arctan

=
[
− sgn(I ′0) (−1)k W̃I(n1, k, ωd)

]
<
[
− sgn(I ′0) (−1)k W̃I(n1, k, ωd)

]
 (21)

where two sign corrections can be observed: − sgn(I ′0). The minus sign comes from Eq. (16),
the physical aspect of which can be seen in Fig. 4, where it is clear that in the case of a
positive gradient, the displacement in the positive direction at P0 will be registered as a
reduction in the light’s intensity. On the other hand, if the spatial gradient would be
negative then the same motion would be registered as an increase of light intensities and the
sign has to be corrected from the gradient with the sgn(I ′0). The identification is carried out
in the same way as described in Sec. 2.3. Using the identified amplitude and phase angle,
residues can be obtained for the ith mode with:

Ri(x) = Ai(x) ei φi(x) (22)

4. Synthetic experiment

The identification of the modal parameters based on the pixel intensities is demonstrated
using the synthesised numerical data. The sensitivity of the modal parameters is tested in
terms of light intensity and gradient (Sec. 4.1), and sensor noise and quantisation (Sec. 4.2).

4.1. Light intensity and gradient influence

Here, the light intensity of individual pixels is examined in relation to the spatial gradient.
The change in light intensity is caused by the harmonic motion, as shown in Fig. 4. Here,
the associated motion—change-in-intensity is examined using a line image with three pixels,
as shown in Fig. 5 (together with a corresponding gradient image I ′0). In Fig. 5, the change

Figure 5: Line image and the corresponding gradient image used for the synthetic experiment at t0.

in light intensity at pixel P0 is based on Eq. (3) and the following expression is obtained:

I(x0, t) = I0(x0)− I ′0(x0) q(t) (23)
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where q(t) is the free response of the SDOF system, similar to Eq. (4), except that here the
amplitude A corresponds to the maximum amplitude of the object, expressed in pixel units.
The reference light intensity I0 is set according to Fig. 5 for the centre pixel P0; in this
example for the centre pixel the reference light intensity and the spatial gradient are equal:
I0 = I ′0 = Imax/2. The maximum intensity level Imax is defined as a real relative number
0 ≤ Imax ≤ 1, where 1 represents the reflected light intensity at maximum illumination.

Gaussian noise is added to the simulated light intensity:

Iσ(x0, t) = I(x0, t) + In(σ) (24)

where In(σ) is Gaussian noise with a mean of zero and the standard deviation σ. As an
example, σ = 13× 10−4 would correspond to a noise of 1-bit on an 8-bit sensor2, see Fig. 6.

The sensitivity to light intensity and gradient influence is researched with harmonic
motion at subpixel amplitude, i.e. A =

[
0.1, 0.05, 0.02, 0.01, 0.007, 0.005

]
px. Additionally,

for two light-intensity levels at pixel P0: I0 =
[
0.5, 0.25

]
are researched. The remaining

parameters of the system are: damped natural frequency ωd = 100 · 2π s−1, damping ratio
δ = 0.5 % and phase angle φ = 1.3. The camera intensity is sampled at 5000 Hz, the
length of the signal is set to T = 0.6 s. The sampling frequency is set the 50 times above
the natural frequency according to the recommendation of Slavič and Boltežar [37]. The
simulated response of the light intensity at A = 0.05 px against the noise is shown in Fig. 6.
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Figure 6: Light-intensity response of the SDOF system with amplitude A = 0.05 px against noise, for the
light intensities at pixel P0: a) I0 = 0.5 and b) I0 = 0.25.

Modal identification is performed with the Morlet-wave (MW) modal package [45] using
the default parameter set [35] (n1 = 5, n2 = 10, klo = 10, Nk = 10, δe = 0.25 %) on simulated
pixel intensities with 15 different realisations of noise. The MW modal method is applied

2The noise, expressed in the number of Qnoise bits, is consistent with the resolution of the quantiser Q
over three standard deviations of Gaussian noise with: 3σ = 2Qnoise−1−Q.
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to the pixel intensities subtracted from the reference image I0(x)− Iσ(x0, t). The results of
the identification are expressed as relative deviations from the theoretical values in Fig. 7,
with error bars where the centre represents the mean and the lines indicate the standard
deviation from the mean.
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Figure 7: Comparative results of modal identification between two gradient levels on 15 different realisations
of the noise for: a) damping ratio, b) amplitude, c) natural frequency and d) phase angle.

4.2. Influence of noise and quantisation on modal identification

The modal identification is tested against sensor noise and quantisation with the simu-
lated gradient case I ′0 = 0.25 px−1 from Sec. 4.1. Here, the Gaussian noise with two standard
deviations σ = 13× 10−4 and σ = 6.5× 10−4 is investigated. To obtain pixel intensities sim-
ilar to those of a real camera, the light intensity with added noise Iσ(x0, t) (24) is quantised
using the following expression:

Ĩσ(x0, t) =
⌊
Iσ(x0, t) ·

(
2Q − 1

)
+ 0.5

⌋
(25)
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for the resolutions Q = 8 bit and Q = 12 bit (see Fig. 3), where b·c is the floor operation.
The simulated pixel intensity at amplitude A = 0.05 px and for 8/12-bit resolution is shown
in Fig. 8. Note: In this section only, pixel intensity is denoted by the tilde Ĩσ(x0, t) to
distinguish it from light intensity Iσ(x0, t).
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Figure 8: Pixel-intensity response of the SDOF system simulated with amplitude A = 0.05 px for: a) Q = 8-
bit and b) Q = 12-bit quantisation resolution.

The MW modal method [45] is used with the same parameters as in Sec. 4.2. The
simulated response Ĩσ(x0, t) is subtracted from the reference intensities Ĩ0 after quantisation,
which is obtained as a time average of Ĩσ(x0, t). The results are expressed as relative
deviations from the theoretical values in Fig. 9, with error bars where the centre represents
the mean and the lines indicate the standard deviation from the mean.

4.3. Discussion

The results from Sec. 4.1 in Fig. 7 show the influence of the gradient on the identification
of the modal parameters in relation to the sensor noise. The example of the line image
(Fig. 5) is an ideally registered, sharp edge for two illumination cases. The desired effects
are demonstrated using the response of SDOF system as an example, and due to the linearity
of the Morlet wave integral (7), the same effects are expected for the MDOF systems. The
first case represents the ideally illuminated edge where the light intensities through three
pixels range linearly from 0 to 1. The second case is half of the ideal, which is closer to
the real illumination. Such a distribution of pixel intensities is required to determine the
gradient, unlike the continuous case (see Fig. 3). Therefore, the gradient directly affects the
sensitivity of the registered movement due to its scaling effect (23), and it is desirable to have
a higher gradient. On the other hand, the sensor noise depends on the light intensities (the
higher the light, the higher the noise), which is also camera dependent [46]. For simplicity,
it is assumed that the sensor emits the same amount of noise and two discrete noise levels
(σ = 13× 10−4 and σ = 6.5× 10−4) were used instead. The 15 different realisations of the
noise are chosen to replicate the number of pixels from the subset as in Sec. 5.2. For the
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Figure 9: Results of the damping ratio and the amplitude identification between two quantisation resolutions
on 15 different realisations of the noise for standard deviation of noise: a) and c) σ = 13× 10−4, b) and d)
σ = 6.5× 10−4.

applied noise level (1-bit noise with an 8-bit sensor), all the modal parameters are identified
accurately according to the mean values, with an error up to 5 % for the damping and up to
3 % for the phase. However, the standard deviation of the damping is up to ±10 % from the
mean for amplitudes greater than 0.02 px, indicating that the damping from a single pixel
can be identified with an error of at most 10 %. In contrast, at smaller amplitudes (and with
the noise level kept the same as before), the standard deviation from the mean increases
from ±20 % at A = 0.01 px to ±45 % at A = 0.005 px, indicating that results from more
pixels are required to increase the accuracy of the identification. The mean-error value of
the amplitude is similar to that of the damping, and is below ±5 % for all the amplitudes
tested, and the standard deviation from the mean has the same trend as the damping, only
with the errors halved.

The results from Sec. 4.2 in Figs. 9a and 9c show no significant change in the mean error
due to quantisation when compared to the results from Sec. 4.1 (Figs. 7a and 7b) for the
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same gradient case (I ′0 = 0.25 px−1). The damping and amplitude are identified with similar
average errors for both resolutions (up to 5 % at amplitude A = 0.005 px). The deviation
of the results for the quantisation with Q = 12-bit resolution did not change significantly
(below ±1 %) compared to the results in Figs. 7a and 7b (see orange error bars). For Q = 8-
bit quantisation, the deviation of the results increased from 6 % at A = 0.02 px to 11 % at
A = 0.005 px, for higher amplitude cases (A =

[
0.1, 0.05

]
px) the deviation was below 3 %.

When the standard deviation of the noise is halved (σ = 6.5× 10−4), the deviation of the
results halves in all cases, but the mean error of the damping and amplitude for the 8-bit
quantisation increases at amplitudes A < 0.01 px, which can be observed in Figs. 9b and 9d
(see green error bars).

Quantisation with 8-bit resolution can register the minimum light-intensity amplitude
AI,min ≈ 0.004. Scaling with the gradient I ′0 = 0.25 px−1 using Eq. (20), the minimum
amplitude Amin = 0.016 px is obtained. Therefore, the amplitude A = 0.02 px for the
gradient I ′0 = 0.25 px−1 is a limiting case for the 8-bit quantisation shown in the case
with noise std. dev. σ = 6.5× 10−4 (Figs. 9b and 9d). In contrast, the higher noise
(σ = 13× 10−4) improved the averaged results for the cases below Amin (Figs. 9a and 9c).
The results show that quantisation has no significant effect on the 12-bit resolution compared
to the errors due to noise. The higher noise level also corresponds to 5-bit of noise on 12-
bit resolution, which is to be expected in the experimental example. To achieve the same
quantisation effect at 12-bit resolution (Figs. 9b and 9d), selected subpixel amplitudes A
should be proportionally lowered (for gradient intensity I ′0 = 0.25 px−1), while maintaining
the same signal-to-noise ratio, the noise should be decreased to σ = 0.41× 10−4. The results
of the quantisation of natural frequency and phase were omitted because the quantisation
errors did not have a significant impact compared to the results in Sec. 4.1 (Figs. 7c and
7d).

The results were obtained with the sampling rate recommended by Slavič and Boltežar
[37], which are preferred for high noise and a low dynamic range data. Sampling rates such
as 5×− 10× (of the analysed frequency ω) can be used for harmonic amplitudes A > 0.02 px
at 8-bit (gradient intensity I ′0 = 0.25 px−1), which corresponds to A > 0.001 px at 12-bit.

In addition, this study found that approximating the admissibility condition (6) in
Eq. (14) causes errors in the identified damping ratio and phase angle for values n < 7
and k < 40. The error is mitigated by subtracting the referenced light intensity I0.

5. Experimental research

In this section, modal identification is performed experimentally on the basis of a single
pixel. First, the identification of the modal parameters based on a single pixel in terms of
gradient intensities is demonstrated, including a comparison with the results obtained from
displacements identified with a digital image correlation (DIC) method. Then the modal
identification of the whole structure is performed based on the information of the single pixel
and DIC method is used to compare mode shapes.

The laboratory, freely supported, steel beam (w × h× d = 500 × 15 × 30 mm) was
used to perform the experiment. The beam has a notch (w × h× d ≈ 2 × 8 × 30 mm)
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in the middle on the underside (see Fig. 10). Excitation involved a single hit with a modal
hammer (KISTLER 9726A20000) and the response was recorded simultaneously with the
accelerometer (PCB J320C03) and the high-speed camera (FASTCAM SA-Z type 2100K-
M-64GB, 12 bit greyscale sensor). The front of the beam was covered with a black-and-
white stripe recorded at 100 kFPS for a duration of 1 s with the electronic shutter set to
1/119149 s. The excitation force and the response of the acceleration signals were sampled
with a NI-9234 data-acquisition (DAQ) device at 51.2 kHz. The camera and the DAQ device
were synchronised with an electrical pulse generated when the beam was hit with a modal
hammer, similar to [47], except that in this research a single laptop was used to run the
camera and DAQ software. The experimental setup is shown in Fig. 10, and the signal of
the hammer impact is shown in Fig. 11.

Figure 10: Experimental setup. Detail in red circle shows the notch on the underside of the beam.

The modal identification was performed directly on the pixel intensities in a time frame
of Tf = 0.5 s, which was shifted for t0 = 75 ms to avoid rigid-body and low-frequency
oscillations of more than 1 px at the beginning of the recording caused by relatively soft
supports (polyurethane foam blocks). Fig. 12 shows the first image taken by the high-speed
camera, which also shows the positions of the hammer impact and the accelerometer. The
pixels used to demonstrate the modal identification using a single pixel are marked with
a cyan line, and for modal identification of the whole model, the pixels with the orange
rectangle of size 30 × 994 px are selected, both shown in Fig. 12.

The reference image I0(x, y) was obtained by averaging all the pixels within the orange

17



0 2.5 5 7.5 t (ms)

0

200

400

600

800

F
(N

)

Figure 11: Impact of the modal hammer.

Figure 12: Full frame, taken with a high-speed camera. The cyan line in the full-frame and the cyan
dots in the detail image mark the pixels used for the single-pixel modal identification, the orange rectangle
(30 × 994) px marks the range of pixels used for modal identification of the whole model.

rectangle (Fig. 12) in the defined time frame Tf . The averaging yields a single image that
is less affected by noise due to the harmonic response in the subpixel range, which is then
used to obtain the gradient intensities (Sec. 2.1). Next, the spatial gradient image in the
direction of motion was obtained: I ′0 = ∂I0(x, y)/∂y , using the second order accurate central
differences. The pixel intensities and the corresponding spatial gradient of the pixels located
at pixel coordinate N = 407 in the reference image (cyan line in Fig. 12) are shown in the
bar plot in Fig. 13. The pixels at the edge of the beam have been omitted due to errors.
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Figure 13: Pixel intensities compared to the spatial gradient from the reference image I0 (30 × 994) at the
selected column (N = 407).

5.1. Single-pixel modal identification

Modal identification based on a single pixel is demonstrated here using the example of
28 pixels (detail frame in Fig. 12 – cyan dots) whose intensities and spatial gradient are
shown in Fig. 13. The response of the pixel intensity both in the time domain I(t) and in
the frequency domain Î(ω) is shown in Fig. 14 using the example of the pixel at coordinates
M = 39, N = 407.
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Figure 14: Response of the selected pixel in the (a) time and (b) frequency domain.

Displacements are identified using the DIC method as implemented in the Python pack-
age pyIDI [48]. The region-of-interest (ROI) is centred on (3 × 9) px at 10 locations hor-
izontally centred on pixel coordinate N = 407 and vertically centred on pixel coordinates
M =

[
21, 23, 27, 29, 33, 35, 39, 41, 45, 47

]
, to include pixels with high gradient intensities

in the vertical direction (3 px) and in the horizontal direction with 9 px, which was minimally
required to identify displacements at all selected points.
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Modal identification was performed for the second mode. The initial natural frequency
is selected from the magnitude plot was Fig. 14b which is f̃2 = 844 Hz and the MW modal
method [45] was applied to pixels, displacements identified with DIC and the accelerometer
responses using the following parameters: n1 = 5, n2 = 10, klo = 40 and δe = 0.2 %.
Selected pixel intensities were subtracted from the reference image to mitigate the influence
of the approximation in Eq. (14) as in Sec. 4 and the sign is corrected with gradient I ′0(x, y)
required for phase identification in Eq. (21): I0(x, y)− I(x, y, t) · sgn (I ′0(x, y)). The results
of the modal identification are shown in Fig. 15 and are compared to the results of DIC and
the accelerometer.
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Figure 15: Single-pixel modal identification results compared to results obtained from DIC and accelerometer
for: a) damping ratio, b) amplitude, c) natural frequency and d) phase angle.

Pixels selected for modal identification oscillate uniformly due to the small oscillations
of the beam and form a subset. The results in Fig. 15 show that the modal parameters
obtained from the pixels at the row coordinates M =

[
22, 25, 28, . . . , 46

]
are different from

the results at the other rows, including the accelerometer results. In Fig. 13, we can see
that the spatial gradient at these coordinates is significantly lower than at the others. As
explained in Sec. 4, a low spatial gradient means a low sensitivity of the motion registration
to light intensities and therefore these pixels can be omitted from the identification.
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5.2. Modal identification of the whole model

In order to perform the modal identification along the beam, the reference image I0 is
divided into 994 subsets, where each subset represents 28 pixels in each column N of the
reference image I0(x, y). Unlike in Sec. 5.1, where the identification was performed for all
pixels in the subset, here the pixels suitable for modal identification are selected as:

• The best pixel - a single pixel with the highest spatial gradient in the subset is selected

• Average pixel - 14 pixels with the highest gradient in the subset are selected and the
results are averaged

Additionally, the displacements from the same pixel responses (Fig. 12) are identified
using the DIC method implemented in the python package pyIDI [48]. The identification of
displacements is performed on ROI of size (21×21) px, centred between all pixel coordinates
in the range 9 ≤ N ≤ 985 and M = 15, with a total of 977 ROIs.

The MW modal method [45] is applied in the same way as in Sec. 5.1, using the same
parameters for all modes. The initial natural frequencies are selected from the power spectral

density Pj(ω) = Î∗j (ω) Îj(ω)
/
T obtained by averaging the PSDs of the pixels with the

highest gradient in all subsets j: P̄ (ω) = 1
N

∑N=994
j=1 Pj(ω). The averaged PSD P̄ (ω) with

selected natural frequencies is shown in Fig. 16.
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Figure 16: Averaged PSD from all subsets. The orange dots mark the peaks of the natural frequencies. The
peak on the far right corresponds most closely to the first torsion mode.

The mode shapes are obtained from the identified amplitude Ai and phase angle φi
using Eq. (22). To simplify graphical representation of the identified mode shapes they are
collapsed on the imaginary axis with ri = =

[
Ri e

−i θi
]
, where θi =

[
67, 44, −3, −35

]
deg.

Mode-shapes are compared for the first and second cases, in Fig. 17 for the first two modes
and in Fig. 18 for the remaining modes. In addition to the mode shapes identified by
averaging the pixels in Figs. 17b, 17d, 18b, 18d, the mode shapes identified from the DIC
data are added for comparison. The identification is done in the same way as for the pixel
data. The results of the natural frequencies and damping ratios for the single pixel and
the average pixel approaches are presented in Tab. 1. The results are spatially weighted,
as described by Tomac and Slavič [47]. A comparison with the identification results of the
acceleration signal, which served as a reference value, is also given.
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Table 1: Results of identification of natural frequencies and damping ratios for the best pixel and averaged
pixel approach, including a comparison with results obtained from the accelerometer data.

Mode: 1st 2nd 3rd 4th

Case:
best averg. best averg. best averg. best averg.
pixel pixel pixel pixel pixel pixel pixel pixel

fd, acc (Hz) 272.9 843.1 1508.9 2676.4
fd (Hz) 272.9 272.9 843.1 843.1 1508.7 1508.8 2676.9 2677.2

Error: (%) 0.0 0.0 0.0 0.0 0.01 0.01 -0.02 -0.03

δacc (%) 0.519 0.112 (0.062) 0.079
δ (%) 0.519 0.52 0.112 0.112 (0.121) (0.084) 0.117 0.085

Error: (%) 0.2 -0.1 0.1 0.2 (-113.2) (-36.6) -58.7 -7.7
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Figure 17: Mode shapes for the first and second natural frequencies based on: (a), (c) the best pixel (OF)
and (b), (d) the average pixel (OF) and DIC.

5.3. Discussion

The results of Sec. 5.1, shown graphically in Fig. 15 represent a comparison of the modal
identification carried out directly from the pixel intensities, the displacements obtained with

22



(a)

17 265 514 762 1010

N(px)

−0.01

−0.005

0.0

0.005

0.01

r 3
(p

x
)

(b)

17 265 514 762 1010

N(px)

−0.01

−0.005

0.0

0.005

0.01

r̄ 3
(p

x
)

OF

DIC

(c)

17 265 514 762 1010

N(px)

−0.01

−0.005

0.0

0.005

0.01

r 4
(p

x
)

(d)

17 265 514 762 1010

N(px)

−0.01

−0.005

0.0

0.005

0.01

r̄ 4
(p

x
)

OF

DIC

Figure 18: Mode shapes for the third and fourth natural frequencies based on: (a), (c) the best pixel (OF)
and (b), (d) the average pixel (OF) and DIC.

DIC and the accelerometer (high-dynamic range sensor) used as a reference. The mean error
values from the accelerometer reference are discussed. All pixels that have high gradient
intensity level at pixel coordinate N = 407 are selected, which corresponds to I ′0 > 700 px−1

(see. Fig. 13) resulting in total of 19 points. For the DIC the mean values are determined
from all 10 locations with ROI (3 × 9) px. Damping is identified with slightly smaller error
from the pixels intensities at 2 %, then from the DIC where it is 3.5 %. The amplitude
is identified with 22 % error, while using DIC it is identified with error of 6 %. The high
amplitude error identified from the pixels is caused by to the accuracy of the calculated
gradient, which is determined from the intensities of the neighbouring pixels. The natural
frequency is identified with an accuracy of < 0.01 % error and the phase angle is identified
with an approximate error of 10 %, for both pixels and DIC.

The results of Sec. 5.2 in Tab. 1 show that the natural frequencies can be accurately
identified from the response data of a single pixel with a small error (up to 0.02 %) and that
adding more pixels does not improve the result significantly. The damping, on the other
hand, is accurately identified in both cases with an error of ±0.2 % for the first and second
modes of vibration, and adding more pixels does not significantly improve the result. The
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third and fourth modes are at relatively high frequencies and are masked by noise, as can
be seen in Fig. 14b, where only the first two modes are clearly visible. However, when the
data from more pixels were used, they become distinguishable from the noise, as can be
seen in Fig. 16. The same behaviour is observed here in Tab 1, where the damping result of
the third mode improved by 68 % (from 113 % to 37 %) and 87 % (from 59 % to 8 %) for the
fourth mode when results from more pixels were used. The relatively poor accuracy of the
third mode compared to the fourth mode is due to the fact that the third mode was excited
near the node, resulting in a higher uncertainty in the accelerometer result.

The identification of mode shapes was similar to that of the damping ratio. In the case of
the best pixel, the mode shapes for the first mode (Fig. 17a) and the second mode (Fig. 17c)
were clearly identified. The average pixel approach improves the MSE3 of both mode shapes
by about 5 %, as can be seen in Figs. 17b and Fig. 17d. The third (Fig. 18a) and fourth
(Fig. 18c) mode shapes are more noisy, based on the best-pixel approach. The average-pixel
approach improves the results by approx. 25 %, as can be seen in Figs. 18b and 18d. From
Figs. 17 and 18 the amplitude of the displacement is approx. ±0.1 px for the first mode and
approx. ±0.04 px for the second mode, while it is approx. ±0.004 px for the third mode
and approx. ±0.005 px for the fourth mode. From the magnitude plot of the single-pixel
response in Fig. 14 it can be seen that the displacement from the third and fourth modes
falls deep into the noise of the camera.

The mode shapes identified from the DIC data agree well with the data from OF on the
left side of the beam (Fig. 12), while they are in error on the right side, which can be seen in
Figs. 17b, 17d, 18b, 18d. The DIC algorithm has succeeded in identifying the displacements
at all selected points. However, they are of lower quality on the right side, most likely due
to the pattern used, which is not optimal for DIC and lightening conditions. The amplitude
difference observed on the left side, expressed with MSE, is approx. 25 % for the first and
second modes and approx. 50 % for the third and fourth. This is due to the accuracy of the
gradient calculation from the pixel intensities, as in the Sec. 5.1. The second-order central
difference algorithm uses the values of the neighbouring pixels to determine the gradient,
which would be fine if the sharp edge was represented with one pixel, as in Fig. 5. However,
in Fig. 13 it can be observed that the sharp edges of the pattern used (Fig. 12) are registered
across two pixels, caused by the blurring effects of focus and shutter [28], leading to errors in
the gradient intensities due to noise. If the gradient intensities |I ′0| were calculated separately
(20) by simply subtracting the low intensity value from the high intensity value divided by
2 px, e.g. for the pixel intensities in Fig. 13 between pixel coordinates 25 < M < 28:
|I ′0| = (I0(28)− I0(25))/2, the MSE would be approx. 5 % for the first two modes, 20 % for
the third mode and 35 % for the fourth mode.

Numerical processing of the video data with DIC (using the python package pyIDI [48])
and modal identification (using the MorletWaveModal python package [45]) in Sec. 5 was
performed on a computer with AMD Ryzen Threadripper 2970WX 24-core processor using
parallelisation of ‘for’ loops on 14 cores. Identifying the displacements using the DIC method

3The improvement of the mode shapes is expressed with a mean square error (MSE) [49], averaged
mode-shapes are taken for reference.
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on ROI (21 × 21) px at 977 locations in Sec. 5.2 took approx. 2.5 h and another 5 min for
modal identification. The time needed to identify the modal parameters for the second case
(14 best pixels) in Sec. 5.2 with a total of 13916 px was approx. 1 h.

6. Conclusion

The identification of modal parameters based on pixel intensities from high-speed video
recordings using the Morlet-wave modal method is explored. Identification requires a sub-
pixel level response of the camera-recorded surface with high gradient features. For mode
shapes to be identified in physical units, the gradient image is required. In contrast, the
gradient is not required for the identification of the damping ratio and natural frequencies.
The sensitivity of the identification based on light intensities is tested in terms of the gra-
dient level under the influence of noise and quantisation. It is shown that by reducing the
gradient, the sensitivity decreases and the errors due to noise dominate when using a 12-bit
quantisation, while with 8 bit there is an additional influence from the quantisation error for
displacements below 0.01 px. In the experimental example it is shown that the response of
a single pixel can be used for a modal identification up to 0.04 px, while for displacements
down to 0.004 px, the addition of results from more pixels in the selected subset in the
modal domain is required to improve identification. The comparison with DIC showed a
difference in the identified amplitude with OF, suggesting that more attention needs to be
paid to the methodology used to calculate the spatial gradient intensity. With this study it
is shown that the Morlet-wave modal method enables modal identification from high-speed
video recordings in the same way as it is classically performed with high-dynamic-range
sensors.
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